Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 11(2): 389-406, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32942044

RESUMO

BACKGROUND & AIMS: The etiology of nonalcoholic fatty liver disease (NAFLD) is poorly understood, with males and certain populations exhibiting markedly increased susceptibility. Using a systems genetics approach involving multi-omic analysis of ∼100 diverse inbred strains of mice, we recently identified several candidate genes driving NAFLD. We investigated the role of one of these, liver pyruvate kinase (L-PK or Pklr), in NAFLD by using patient samples and mouse models. METHODS: We examined L-PK expression in mice of both sexes and in a cohort of bariatric surgery patients. We used liver-specific loss- and gain-of-function strategies in independent animal models of diet-induced steatosis and fibrosis. After treatment, we measured several metabolic phenotypes including obesity, insulin resistance, dyslipidemia, liver steatosis, and fibrosis. Liver tissues were used for gene expression and immunoblotting, and liver mitochondria bioenergetics was characterized. RESULTS: In both mice and humans, L-PK expression is up-regulated in males via testosterone and is strongly associated with NAFLD severity. In a steatosis model, L-PK silencing in male mice improved glucose tolerance, insulin sensitivity, and lactate/pyruvate tolerance compared with controls. Furthermore, these animals had reduced plasma cholesterol levels and intrahepatic triglyceride accumulation. Conversely, L-PK overexpression in male mice resulted in augmented disease phenotypes. In contrast, female mice overexpressing L-PK were unaffected. Mechanistically, L-PK altered mitochondrial pyruvate flux and its incorporation into citrate, and this, in turn, increased liver triglycerides via up-regulated de novo lipogenesis and increased PNPLA3 levels accompanied by mitochondrial dysfunction. Also, L-PK increased plasma cholesterol levels via increased PCSK9 levels. On the other hand, L-PK silencing reduced de novo lipogenesis and PNPLA3 and PCSK9 levels and improved mitochondrial function. Finally, in fibrosis model, we demonstrate that L-PK silencing in male mice reduced both liver steatosis and fibrosis, accompanied by reduced de novo lipogenesis and improved mitochondrial function. CONCLUSIONS: L-PK acts in a male-specific manner in the development of liver steatosis and fibrosis. Because NAFLD/nonalcoholic steatohepatitis exhibit sexual dimorphism, our results have important implications for the development of personalized therapeutics.


Assuntos
Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/genética , Piruvato Quinase/genética , Adulto , Animais , Modelos Animais de Doenças , Feminino , Mutação com Ganho de Função , Perfilação da Expressão Gênica , Inativação Gênica , Predisposição Genética para Doença , Humanos , Fígado/enzimologia , Fígado/patologia , Mutação com Perda de Função , Masculino , Camundongos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Piruvato Quinase/metabolismo , Fatores Sexuais , Regulação para Cima
2.
Mol Metab ; 30: 30-47, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31767179

RESUMO

OBJECTIVE: Lipocalin-2 (LCN2) is a secreted protein involved in innate immunity and has also been associated with several cardiometabolic traits in both mouse and human studies. However, the causal relationship of LCN2 to these traits is unclear, and most studies have examined only males. METHODS: Using adeno-associated viral vectors we expressed LCN2 in either adipose or liver in a tissue specific manner on the background of a whole-body Lcn2 knockout or wildtype mice. Metabolic phenotypes including body weight, body composition, plasma and liver lipids, glucose homeostasis, insulin resistance, mitochondrial phenotyping, and metabolic cage studies were monitored. RESULTS: We studied the genetics of LCN2 expression and associated clinical traits in both males and females in a panel of 100 inbred strains of mice (HMDP). The natural variation in Lcn2 expression across the HMDP exhibits high heritability, and genetic mapping suggests that it is regulated in part by Lipin1 gene variation. The correlation analyses revealed striking tissue dependent sex differences in obesity, insulin resistance, hepatic steatosis, and dyslipidemia. To understand the causal relationships, we examined the effects of expression of LCN2 selectively in liver or adipose. On a Lcn2-null background, LCN2 expression in white adipose promoted metabolic disturbances in females but not males. It acted in an autocrine/paracrine manner, resulting in mitochondrial dysfunction and an upregulation of inflammatory and fibrotic genes. On the other hand, on a null background, expression of LCN2 in liver had no discernible impact on the traits examined despite increasing the levels of circulating LCN2 more than adipose LCN2 expression. The mechanisms underlying the sex-specific action of LCN2 are unclear, but our results indicate that adipose LCN2 negatively regulates its receptor, LRP2 (or megalin), and its repressor, ERα, in a female-specific manner and that the effects of LCN2 on metabolic traits are mediated in part by LRP2. CONCLUSIONS: Following up on our population-based studies, we demonstrate that LCN2 acts in a highly sex- and tissue-specific manner in mice. Our results have important implications for human studies, emphasizing the importance of sex and the tissue source of LCN2.


Assuntos
Tecido Adiposo/metabolismo , Lipocalina-2/metabolismo , Adiposidade , Animais , Composição Corporal , Peso Corporal , Feminino , Glucose/análise , Homeostase , Resistência à Insulina , Lipídeos/análise , Lipocalina-2/genética , Lipocalina-2/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Obesidade/metabolismo , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...